在这项工作中,我们提出了一个框架,用于部署的无人驾驶汽车(UAV)的便携式接入点(PAP),以服务于一组接地节点(GNS)。除PAP和GNS外,该系统还由安装在人造结构上的一组智能反射表面(IRS)组成,以增加每焦耳的能源消耗的钻头数量,这些能量消耗被测量为全球能源效率(GEE)。 PAP的GEE轨迹是通过考虑UAV推进能量消耗和PAP电池的PEUKERT效应来设计的,PAP电池代表了精确的电池放电曲线作为无人机功耗概况的非线性功能。 GEE轨迹设计问题分为两个阶段:在第一个阶段,使用多层圆形填料方法找到了PAP的路径和可行位置,并使用替代方案计算所需的IRS相移值优化方法考虑了IRS元素的幅度和相位响应之间的相互依赖性;在第二阶段,使用新型的多轨迹设计算法计算PAP飞行速度和用户调度。数值评估表明:忽略Peukert效应高估了PAP的可用飞行时间;一定的阈值后,增加电池尺寸会减少PAP的可用飞行时间;与其他基线场景相比,IRS模块的存在改善了系统的GEE。与使用顺序凸编程和Dinkelbach算法的组合开发的单圈轨迹相比,多圈轨迹可节省更多的能量。
translated by 谷歌翻译
Given a large graph with few node labels, how can we (a) identify the mixed network-effect of the graph and (b) predict the unknown labels accurately and efficiently? This work proposes Network Effect Analysis (NEA) and UltraProp, which are based on two insights: (a) the network-effect (NE) insight: a graph can exhibit not only one of homophily and heterophily, but also both or none in a label-wise manner, and (b) the neighbor-differentiation (ND) insight: neighbors have different degrees of influence on the target node based on the strength of connections. NEA provides a statistical test to check whether a graph exhibits network-effect or not, and surprisingly discovers the absence of NE in many real-world graphs known to have heterophily. UltraProp solves the node classification problem with notable advantages: (a) Accurate, thanks to the network-effect (NE) and neighbor-differentiation (ND) insights; (b) Explainable, precisely estimating the compatibility matrix; (c) Scalable, being linear with the input size and handling graphs with millions of nodes; and (d) Principled, with closed-form formula and theoretical guarantee. Applied on eight real-world graph datasets, UltraProp outperforms top competitors in terms of accuracy and run time, requiring only stock CPU servers. On a large real-world graph with 1.6M nodes and 22.3M edges, UltraProp achieves more than 9 times speedup (12 minutes vs. 2 hours) compared to most competitors.
translated by 谷歌翻译
High content imaging assays can capture rich phenotypic response data for large sets of compound treatments, aiding in the characterization and discovery of novel drugs. However, extracting representative features from high content images that can capture subtle nuances in phenotypes remains challenging. The lack of high-quality labels makes it difficult to achieve satisfactory results with supervised deep learning. Self-Supervised learning methods, which learn from automatically generated labels has shown great success on natural images, offer an attractive alternative also to microscopy images. However, we find that self-supervised learning techniques underperform on high content imaging assays. One challenge is the undesirable domain shifts present in the data known as batch effects, which may be caused by biological noise or uncontrolled experimental conditions. To this end, we introduce Cross-Domain Consistency Learning (CDCL), a novel approach that is able to learn in the presence of batch effects. CDCL enforces the learning of biological similarities while disregarding undesirable batch-specific signals, which leads to more useful and versatile representations. These features are organised according to their morphological changes and are more useful for downstream tasks - such as distinguishing treatments and mode of action.
translated by 谷歌翻译
While risk-neutral reinforcement learning has shown experimental success in a number of applications, it is well-known to be non-robust with respect to noise and perturbations in the parameters of the system. For this reason, risk-sensitive reinforcement learning algorithms have been studied to introduce robustness and sample efficiency, and lead to better real-life performance. In this work, we introduce new model-free risk-sensitive reinforcement learning algorithms as variations of widely-used Policy Gradient algorithms with similar implementation properties. In particular, we study the effect of exponential criteria on the risk-sensitivity of the policy of a reinforcement learning agent, and develop variants of the Monte Carlo Policy Gradient algorithm and the online (temporal-difference) Actor-Critic algorithm. Analytical results showcase that the use of exponential criteria generalize commonly used ad-hoc regularization approaches. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
translated by 谷歌翻译
Hierarchical learning algorithms that gradually approximate a solution to a data-driven optimization problem are essential to decision-making systems, especially under limitations on time and computational resources. In this study, we introduce a general-purpose hierarchical learning architecture that is based on the progressive partitioning of a possibly multi-resolution data space. The optimal partition is gradually approximated by solving a sequence of optimization sub-problems that yield a sequence of partitions with increasing number of subsets. We show that the solution of each optimization problem can be estimated online using gradient-free stochastic approximation updates. As a consequence, a function approximation problem can be defined within each subset of the partition and solved using the theory of two-timescale stochastic approximation algorithms. This simulates an annealing process and defines a robust and interpretable heuristic method to gradually increase the complexity of the learning architecture in a task-agnostic manner, giving emphasis to regions of the data space that are considered more important according to a predefined criterion. Finally, by imposing a tree structure in the progression of the partitions, we provide a means to incorporate potential multi-resolution structure of the data space into this approach, significantly reducing its complexity, while introducing hierarchical feature extraction properties similar to certain classes of deep learning architectures. Asymptotic convergence analysis and experimental results are provided for clustering, classification, and regression problems.
translated by 谷歌翻译
Being able to forecast the popularity of new garment designs is very important in an industry as fast paced as fashion, both in terms of profitability and reducing the problem of unsold inventory. Here, we attempt to address this task in order to provide informative forecasts to fashion designers within a virtual reality designer application that will allow them to fine tune their creations based on current consumer preferences within an interactive and immersive environment. To achieve this we have to deal with the following central challenges: (1) the proposed method should not hinder the creative process and thus it has to rely only on the garment's visual characteristics, (2) the new garment lacks historical data from which to extrapolate their future popularity and (3) fashion trends in general are highly dynamical. To this end, we develop a computer vision pipeline fine tuned on fashion imagery in order to extract relevant visual features along with the category and attributes of the garment. We propose a hierarchical label sharing (HLS) pipeline for automatically capturing hierarchical relations among fashion categories and attributes. Moreover, we propose MuQAR, a Multimodal Quasi-AutoRegressive neural network that forecasts the popularity of new garments by combining their visual features and categorical features while an autoregressive neural network is modelling the popularity time series of the garment's category and attributes. Both the proposed HLS and MuQAR prove capable of surpassing the current state-of-the-art in key benchmark datasets, DeepFashion for image classification and VISUELLE for new garment sales forecasting.
translated by 谷歌翻译
As aerial robots are tasked to navigate environments of increased complexity, embedding collision tolerance in their design becomes important. In this survey we review the current state-of-the-art within the niche field of collision-tolerant micro aerial vehicles and present different design approaches identified in the literature, as well as methods that have focused on autonomy functionalities that exploit collision resilience. Subsequently, we discuss the relevance to biological systems and provide our view on key directions of future fruitful research.
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
3D gaze estimation is most often tackled as learning a direct mapping between input images and the gaze vector or its spherical coordinates. Recently, it has been shown that pose estimation of the face, body and hands benefits from revising the learning target from few pose parameters to dense 3D coordinates. In this work, we leverage this observation and propose to tackle 3D gaze estimation as regression of 3D eye meshes. We overcome the absence of compatible ground truth by fitting a rigid 3D eyeball template on existing gaze datasets and propose to improve generalization by making use of widely available in-the-wild face images. To this end, we propose an automatic pipeline to retrieve robust gaze pseudo-labels from arbitrary face images and design a multi-view supervision framework to balance their effect during training. In our experiments, our method achieves improvement of 30% compared to state-of-the-art in cross-dataset gaze estimation, when no ground truth data are available for training, and 7% when they are. We make our project publicly available at https://github.com/Vagver/dense3Deyes.
translated by 谷歌翻译
The sheer volume of online user-generated content has rendered content moderation technologies essential in order to protect digital platform audiences from content that may cause anxiety, worry, or concern. Despite the efforts towards developing automated solutions to tackle this problem, creating accurate models remains challenging due to the lack of adequate task-specific training data. The fact that manually annotating such data is a highly demanding procedure that could severely affect the annotators' emotional well-being is directly related to the latter limitation. In this paper, we propose the CM-Refinery framework that leverages large-scale multimedia datasets to automatically extend initial training datasets with hard examples that can refine content moderation models, while significantly reducing the involvement of human annotators. We apply our method on two model adaptation strategies designed with respect to the different challenges observed while collecting data, i.e. lack of (i) task-specific negative data or (ii) both positive and negative data. Additionally, we introduce a diversity criterion applied to the data collection process that further enhances the generalization performance of the refined models. The proposed method is evaluated on the Not Safe for Work (NSFW) and disturbing content detection tasks on benchmark datasets achieving 1.32% and 1.94% accuracy improvements compared to the state of the art, respectively. Finally, it significantly reduces human involvement, as 92.54% of data are automatically annotated in case of disturbing content while no human intervention is required for the NSFW task.
translated by 谷歌翻译